Unit 4 Review 2

CALORIMETRY AND HESS' LAW

Thanksgiving Break

- We will be posting ~92 questions for you to work from old exams and Quest homework
- Historically, students who honestly do these problems do better on the exam

YouTube Videos:

Bomb Calorimetry I and II

Thermodynamics - Calorimetry Pt II - Bomb Calorimeter Example

人() = AH-AnRT

Conceptual Question II (last week)

For which of the following reactions is $\Delta U_{\rm sys} < \Delta H_{\rm sys}$ at constant external pres-

1.
$$N_2O_5(l) + H_2O(l) \rightarrow 2HNO_3(aq)$$
2. $SnO_2(g) + C(s) \rightarrow Sn(s) + CO_2(g)$

$$2. SnO_2(g) + C(s) \rightarrow Sn(s) + CO_2(g)$$

2.
$$\operatorname{SnO}_2(g) + \operatorname{C}(s) \to \operatorname{Sn}(s) + \operatorname{CO}_2(g)$$

3.
$$N_2(g) + O_2(g) \to 2NO(g)$$

4.
$$2NH_3(g) \rightarrow 3H_2(g) + N_2(g)$$

5.
$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l)$$

Intensive vs Extensive Properties

Intensive properties are independent on amount, meaning the value is constant no matter how much you have.

Extensive properties are dependent on amount, meaning the value itself accounts for the mass, volume, etc.

Specific Heat Capacity (J/g°C)

- Heat Capacity (J/° C)
- Molar enthalpy of combustion (kJ/mol)
- Enthalpy of combustion for a process (kJ)

• Standard enthalpy of reaction $(\Delta H^{\circ}_{rxn} = kJ/mol rxn)$

• Enthalpy for a limiting reagent problem $(\Delta H_{rxn} = kJ)$

Why does this matter?

1. You have equal masses of each of the following substances at room temperature:

$$\begin{split} C_{\text{lithium}} &= 3.58 \, \frac{\text{J}}{\text{g}^{\circ}\text{C}} \qquad C_{\text{iron}} = 0.450 \, \frac{\text{J}}{\text{g}^{\circ}\text{C}} \\ C_{\text{air}} &= 1.012 \, \frac{\text{J}}{\text{g}^{\circ}\text{C}} \qquad C_{\text{helium}} = 5.193 \, \frac{\text{J}}{\text{g}^{\circ}\text{C}} \\ C_{\text{mercury}} &= 0.140 \, \frac{\text{J}}{\text{g}^{\circ}\text{C}} \end{split}$$

Assuming no phase change occurs, which substance will have the highest final temperature after 22.7 J heat is added to each?

- 1. Lithium
- **2.** Air
- 3. Iron
- 4. Helium
- 5. Mercury correct

$$2. q = mC_s \Delta T + C\Delta T$$

$$7 \text{ extensive}$$

$$7 \text{ extensive}$$

3. If ΔH_f is -266 kJ/ mol rxn, but you make 4 moles of products, you need to account for the amount (convert intensive, ΔH_f to extensive, ΔH).

Today's Equations

$$H = U + PV$$

$$\Delta H = \Delta U + P\Delta V$$

$$\Delta U = \Delta H - P\Delta V$$

$$\Delta U = \Delta H - \Delta nRT$$

$$\Delta H = q_{P}$$

$$\Delta U = q_{V}$$

$$q_{cal} = -q_{sys}$$

$$q_{cal} = C_{cal}\Delta T$$

$$q_{cal} = m_{water} \cdot C_{s,water} \cdot \Delta T + C_{hardware} \cdot \Delta T$$

```
\Delta H_{\rm rxn} = \Delta H_1 + \Delta H_2 + \Delta H_3 + ...
\Delta H_{\rm rxn}^{\circ} = \Sigma n \Delta H_{\rm f}^{\circ} \text{ (products)} - \Sigma n \Delta H_{\rm f}^{\circ}
(reactants)
\Delta H_{\rm rxn}^{\circ} \approx \Sigma n \Delta H_{\rm bond}^{\circ} \text{ (breaking)} - \Sigma n \Delta H_{\rm bond}^{\circ} \text{ (making)}
```

Calorimetry

DU= g ste

Calorimetry Overview

Constant Pressure, 1atm

Reaction

(System)

H₂O that you measure (Surroundings)

Coffee Cup

Bomb Calorimeter

Calorimetry Overview

There are two types of calorimetry:

1. Coffee cup calorimetry measures heat at constant pressure ($q_p = \Delta H$) in an insulated, open-air container

2. Bomb calorimetry measures heat at constant volume ($q_v = \Delta U$) in a rigid, isolated container

Coffee Cup Calorimetry

Coffee Cup: the goal here is to measure heat at constant pressure. This directly gives us the enthalpy (ΔH) for a reaction.

Insulated hardware does not absorb heat, so we don't care about the C Δ T term for the calorimeter

Coffee Cup

Bomb Calorimetry

The goal is to get the internal energy change (ΔU) of a combustion reaction by measuring the ΔT of both the surrounding water and the hardware of the calorimeter

Stainless steel hardware does absorb heat, so we do care about the C Δ T term for the calorimeter

Bomb Calorimeter

Bomb Calorimeter Exam Question

Methyl tert-butyl ether or MTBE is an octane booster for gasoline. The combustion of 0.9211 grams of MTBE (C₅H₁₂O 88.15 g/mol) is carried out in a bomb calorimeter. The calorimeter's hardware has a heat capacity of 1.540 kJ/°C and is filled with exactly 2.022 L of water. The initial temperature was 26.336°C. After the combustion, the temperature was 29.849°C.

Bomb Calorimetry – ΔU to ΔH

If we are interested in finding the ΔH° of the combustion reaction, two additional steps are necessary.

 $\Delta U = q + w$; remember that at standard conditions and constant pressure:

$$q_p = \Delta H$$
 and $w = -P\Delta V = -\Delta nRT$

If you can write out your balanced combustion reaction, you can easily solve for ΔH

$$\Delta U + \Delta nRT = \Delta H$$

Bomb Calorimeter

Enthalpy

Suppose you have a reaction but no way to directly calculate its enthalpy. You can "create" a path for your reaction using one of three techniques:

1. The first technique is the one where you algebraically rearrange multiple steps that will equal the total enthalpy change of a single reaction

$$\Delta H_{rxn} = \Delta H_1 + \Delta H_2 + \Delta H_3 ... + \Delta H_n \times$$

2. Formation reactions take the sum of the formation enthalpy of products minus the reactants

$$\Delta H_{rxn} = \sum n\Delta H_f^{\circ}(prod) - \sum n\Delta H_f^{\circ}(react) \qquad \times$$

3. Bond dissociation enthalpy is the weird one that takes the bond strength of the reactants minus the products Reactants - Products

$$\Delta H_{rxn} = \sum BE(react) - \sum BE(prod)$$

Hess' Law – Sum of Reactions

Goal: create your desired equation using a given set up hypothetical steps

$$\Delta H_{rxn} = \Delta H_1 + \Delta H_2 + \Delta H_3 \dots + \Delta H_n$$

- What you can do to "make" your sum of reactions equal your goal reaction: multiply the entire reaction by a coefficient or fraction (including the enthalpy value associated with that step!) or reverse the entire reaction (changing the sign of the enthalpy value associated with that step).
- I prefer going step-by-step to determine what adjustments need to be made (start at step one, make necessary adjustments, etc.)

Hess' Law – Sum of Reactions

Consider the following balanced chemical reaction:

$$H_2SO_4(l) \rightarrow SO_3(g) + H_2O(g)$$

To solve for the $\Delta H^{\circ}_{\mathrm{rxn}}$ for this reaction, you collect the following data in the lab:

1)
$$H_2S(g) + 2O_2(g) \rightarrow H_2SO_4(l),$$

$$\Delta H_{\text{rxn}}^{\circ} = 241.3 \text{ kJ/mol}$$
2) $\left(\frac{1}{2}H_2S(g) + O_2(g) \rightarrow \frac{1}{2}SO_3(g) + \frac{1}{2}H_2O(l), \\ \Delta H_{\text{rxn}}^{\circ} = -100.6 \text{ kJ/mol}\right)$
2) $H_2O(l) \rightarrow H_2O(g),$

$$\Delta H_{\text{rxn}}^{\circ} = 41.9 \text{ kJ/mol}$$

What is the $\Delta H_{\rm rxn}^{\circ}$ of the overall balanced reaction?

$$H_2SO_4(2) \longrightarrow H_2S(g) + 2O_2(g)$$

 $H_2S(g) + 2O_2(g) \longrightarrow SO_3(g) + H_2O(g)$
 $H_2O(g) \longrightarrow H_2O(g)$
 $H_2SO_4(e) \longrightarrow SO_3(g) + H_2O(g)$
 $-100.6) + 41.9 = 82 \times 7/mol$

DHrxn=+241.3+(2.-100.6)+41.9=82 KJ/mol

Hess' Law – Formation Reactions

Goal: determine the enthalpy of formation for your products and reactants.
 The enthalpy of the reaction is the difference between the products and reactants.

$$\Delta H_{rxn} = \sum n\Delta H_f^{\circ}(prod) - \sum n\Delta H_f^{\circ}(react)$$

- Phase and number of moles are important!
- Note: a formation reaction for a molecule is a balanced chemical reaction that shows the constituent elements combining to form a single mole of your desired molecule and nothing else.

$$C_{(graphite)} + O_{2(g)} \rightarrow CO_{2(g)}$$

Hess' Law – Formation Reactions Example

- Goal: determine the enthalpy of formation for your products and reactants.
 The enthalpy of the reaction is the difference between the products and reactants.
- Number of moles are important!

$$\Delta H_{rxn} = \sum_{i} n\Delta H_{f}^{\circ}(prod) - \sum_{i} n\Delta H_{f}^{\circ}(react)$$

$$P^{rocl} - reac+$$

Consider the following reaction and standard heats of formation:
$$\underline{AgI(s)} + \frac{1}{2} \underline{Br_2(g)} \rightarrow \underline{AgBr(s)} + \frac{1}{2} \underline{I_2(s)}$$

$$\Delta H_f^{\circ} \text{ for } \underline{AgI(s)} = -61.9 \text{ kJ/mol}$$

$$\Delta H_f^{\circ} \text{ for } \underline{AgBr(s)} = -100.4 \text{ kJ/mol}$$

$$\Delta H_f^{\circ} \text{ for } \underline{Br_2(g)} = +30.9 \text{ kJ/mol}$$
 What is the ΔH_{rxn}° ?

$$(-100.4)$$
 - $(-61.9 + \frac{1}{2}30.9) = -54.0 \text{ kJ}$

Hess' Law – Formation Reactions Example

Bonus Challenge: Write the reactions for each ΔH_f value provided in this question -> I mol product, I product >> reactants elements in their

Consider the following reaction and standard heats of formation:

$$AgI(s) + \frac{1}{2}Br_2(g) \rightarrow AgBr(s) + \frac{1}{2}I_2(s)$$

 ΔH_f° for $AgI(s) = -61.9 \text{ kJ/mol}$
 ΔH_f° for $AgBr(s) = -100.4 \text{ kJ/mol}$
 ΔH_f° for $Br_2(g) = +30.9 \text{ kJ/mol}$
What is the ΔH_{rxn}° ?

$$Ag(s) + \frac{1}{2}I_{20} \longrightarrow AgI(s)$$

 $Ag(s) + \frac{1}{2}Br_{2}(l) \longrightarrow AgBr(s)$
 $Br_{2}(l) \longrightarrow Br_{2}(g)$

Hess' Law – Bond Energy Data

- Goal: determine the energy difference between all bonds breaking and all bonds forming
- You must draw a proper Lewis structure, determine what kind of bonds are breaking (reactants) and what kind of bonds are forming (products), and take the difference.

 $\Delta H_{rxn} = \sum BE(react) - \sum BE(prod)$

Hess' Law – Bond Energy Data Example

What is the standard enthalpy for the combustion of ethylene?

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$

Final Challenge - ΔH_{rxn} Stoichiometry

As written, the following reaction has a $\Delta H_{rxn} = -137$ kJ/ mol rxn. $3NO_2(g) + H_2O(l) \rightarrow 2HNO_3(aq) + NO(g)$

+137 KJ Nol VXN X 225 Mel F 347.5 KJ EXTENSIVE